Fun with Binomials

Binomials are numbers that give the coefficients of the terms of the expansion
of (a + b)™. Binomials have many interest properties. Two of those properties will be
looked at as well as a curiosity relating to Fermat’'s Last Theorem.

Fermat’'s Last Theorem states that for n > 2 there are no integer solutions to the
equation c™ = a™ + b™. Fermat wrote in a book he was reading that he had a proof of
the conjecture but that the margin in the book was not wide enough to write the proof
in. No one knows what proof he had in mind. Over several centuries many proofs have
been put forward, but all were found to have flaws. In 1994 the conjecture was proven,
but it was given by one who scales the mountain peaks of the math world and is only
understood by those who hike the high places above the clouds. This would not have
been what Fermat envisioned as a proof. No one would have been walking the high
peaks necessary for such a proof in his time. Is there a proof that he would have been
capable of giving? It is believed not and no simple proof is given here. If there is any
simple proof it would likely be related to binomials. Two relations relating to binomials
will be looked at.

Relation 1

The first relation is

(R1) Z(—l)i(n — 2i0) (?) = 0 wherenis odd.

n!

The term (?) is the (i*" + 1) value of the binomial expansion and is given by

(n=D!’
These are the coefficients of the expansion of (a + b)™ with the first coefficient
being (g) What is Relation R1 saying? The notation while being concise and elegant

somewhat hides what is physically, in a mathematical sense, being stated. Go back to
the 8" or 9™ grade, at least in my time, and construct a binomial cascade up ton = 7.



Relation (R1) states that forn = 7
M@ + (=DGI(7) + (D(B)(21) + (=1(1)(35) = 0.
Doing the arithmetic one finds that 7 — 35 + 63 — 35 does equal zero. To prove (R1) in

general the method of the construction of the binomial cascade will be put in use.

The first binomial value of the nt" row is (8) = 1. The last value of the row is also 1.

The values between the first and the last are found by adding the values in the
preceding row just above and to either side of the value being looked for, i.e,

ny (m-—1 n—1
(i)_(i—1)+( i ).
This construction can be done again to obtain the n" row in terms of the (n — 2) row.
The result is that the first term of the nt"* row is (g) = (n 8 2
n _ ,/m-—2 n—2 : ny (mn-—2 n—2 n—2
(1)—2( 0 )+( 1 ).Themlddletermsare(i)—(i_2)+2(i_1)+( ; )
Applying the above to (R1) gives, remembering that n is odd

) = 1. The second term is
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The letter “i" is index variable for the summation. It can be changed as long as it is
likewise changed over the summation. In the first summation leave i as it is. In the
second summation leti = j — 1. In the third summation let i = k — 2.
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Let the three summations be s1, s2 and s3, respectively as given in the above
equation and rewrite them as below.
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Let the summation terms in each of s1, s2 and s3 be s11, s22 and s33,
respectively. Change index j to i and index k to i. These are just indices and be any

letter. Combining the summations gives
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Equation (b) can be written
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Combining binomial terms gives
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This proves relation (R1).



The trek taken has not been a bush whack but has been a swamp walk. For those
who prefer less rigor and more clarity take the terms from equation (a) and put them in
a table the columns of which are the binomial coefficients. The table will look as below.

(nEZ) (nIZ) (nEZ) (n;Z) <n—2>

n—2
n—3 (n - 1)
2 3
n —(n—2) n—4 (=D*(m - 2k)
—2(n-2) | 2(n—4) | —2(n—6) | - | 2(-DF*(n -2k +2) )7 3)
n—4 | —(n—-6) | n-8 (—DF2(n — 2k — 4) 1T @) D7
0 0 0 0

Summing the columns up to the last two gives the zeros found in the more rigorous
proof. The last two columns are handled as in the more rigorous proof.

This looked messy but was not that difficult.



Relation 2

The second relation is

n—1

(R2) (a" +b") = - z Bi(1)(ab)'(a + b)r2

The B; terms will be explained in the construction of the proof. The proof will be done
by construction which is permissible for those who hike the lower hills of the math
world. To make the construction less messy define

Bl(k) = (Z) and A(x,y) = a*bY + a¥b* .

Two relations involving A that will be helpful are
(al) A(x,0) =a*+b* and
(a2) A(x,y) = (ab)A(x—1,y—1).

The trek will not be up a mountain, but it will be over some uneven ground with
maybe a little bushwhacking. After a struggle over the terrain, a look back will give a
clearer view at what was transverse. Start with

n-1

2
@+ = Y Fu(@b)(a+ by where fy(k) = (})
i=0



This is the formula for the binomial expansion taking advantage of its symmetry.

The g, (k) terms are the binomial coefficients. Continuing
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Below is a Matlab program to compute the g;(1) values for a given n, n = 9 in the program.

n=29;
b = zeros((n-1)/2,(n+1)/2);
for kK = 1:5
b(1,k) = -bi(n,k);
end

for j = 2:((n+1)/2)
for k = 1: ((n+1)/2-(j-1))
b(j,k) = b(j-1,k+1) - b(j-1,1)*bi(n-2*(j-1),k);

end
end
b =[[1 zeros(1,(n-1)/2)]; b]:
a=fliplr(rot90(b,3));
a2 = [fliplr(1:2:n) 0];
a =J[a2;a(l,:)]



Now, to look back to get a clearer view of the terrain, take n = 9 and construct the
B values without using any symbolism to condense the terms such as summation
sings. Start with

a®+b°=a’+b°

Add and subtract the middle values for the binomial expansion of (a + b)°.

a’ + b° = (a® + b°) + [9(a®bh + ab®) + 36(a’b? + a?b”) + 84(a’h3 + a®b®) + 126(a®b* + a*b®)]
—[9(a®bh + ab®) + 36(a’b? + a?b”) + 84(a’h® + a3b®) + 126(a°b* + a*b®)]

Combine the first two terms with those in the first brackets and divide out ab from the
terms in the second brackets.

= (a+ b)° — (ab)[9(a” + b7) + 36(a’bh + ab®) + 84(a°b? + a?b>) + 126(a*b® + a®b*)]

Within the brackets add 9 times the middle terms in the binomial expansion of (a + b)’
and subtract those terms from the like terms.

= (a+b)° - (ab)[9(a’ + b7) + 63(a’h + ab®) + 189(a®h? + a?b®) + 315(a*h® + a®b*)]
— (ab)[(36 — 63)(a®h + ab®) + (84 — 189)(a®h? + a?h5) + (126 — 315)(a*h® + a®h®)]

= (a+ b)° —9(ab)(a + b)” + (ab)[27(a®h + ab®) + 105(a’b? + a?b®) + 189(a*h® + a®b*)]
= (a + b)° —9(ab)(a + b)” + (ab)?[27(a® + b>) + 105(a*b + ab*) + 189(ab? + a?b?)]

= (a+ b)° —9(ab)(a + b)” + (ab)?[27(a® + b>) + 135(a*b + ab*) + 270(ab? + a?b?)]
+ (ab)?[(105 — 135)(a*b + ab*) + (189 — 270)(a®b? + a?b3)]

= (a+b)° —9(ab)(a + b)” + 27(ab)?(a + b)® + (ab)?[-30(a*b + ab*) — 81(a®b? + a?b3)]
= (a+ b)° —9(ab)(a + b)” + 27(ab)?(a + b)> — (ab)3[30(a® + b3) — 81(a®b + ab?)]

= (a+b)° —9(ab)(a + b)” + 27(ab)?(a + b)> — (ab)3[30(a® + b3) + 90(a?b + ab?)]
— (ab)3[(81 — 90)(a?b + ab?)]

= (a+b)°—9(ab)(a + b)” + 27(ab)?(a + b)° — 30(ab)3(a + b)3 + 9(ab)*(a + b)

From the Matlab program above with n = 9 one gets the same S values as were
just derived.



Look at the relation ¢c™ = a™ + b™ where n is an odd positive integer greater than 1
In Relation 2, f»-1 = n . This is left to the reader to show. The relation can be reduced
2

to

n—1

a®+b*"=6x(a+b)>+nx(a+b)x(ab) z

for some integer 6 . The term (a + b) can be factored out giving

a”+b”=(a+b)(6x(a+b)+n><(ab)n__1>.

Fermat’s Last Theorem centers on the equation
¢ =a™ + b™ where c, b,a,n are positive integers.

The theorem states that no positive integers c, b, a exist for n > 2 such that the
equation holds. No generality is lost confining n to being a positive odd prime number
and factoring out any common factors from c, b, a so that they have no factors in
common.

One may write
n-1
c" = a”+b”=(a+b)(6><(a+b)+n><(ab) 2 )

Assume that nis not a factor of ¢, i.e. n f c. Also assume that p is a factor of c, i.e. p|c.
Since p is a factor of ¢, it is not a factor of a or b. If pis a factor of (a + b) , then it

n-1 n-1

cannot be a factor of (6 X (a+b)+nx (ab)T) since it is a factor of n x (ab) 2z . All

instances of p must be in (a + b). That is p™is in (a + b). This is true for all factors of
(a+b). Thus

a+b =y" for some integery.

Since nis an odd integer in Relation 2, replace a with ¢ and b with - a or — b. Using
the same construction and arguments

c—a= " for some integer B

c—b =a" for some integer a.



Solving a, b and c gives

_yt=("-a")
a=

2
v+ (" —a")
b =
2
y*+ (" +a")
c = 5

where n is an odd integer greater than 1 and all other terms are positive integers. To
sum up, if a, b and ¢ are positive integers such that ¢ = b™ + a™ where n is a positive
odd integer greater than 1, then there exists integers a, f and y such that the above
relations hold. According to Fermat’s Last Theorem, which has recently been proved
as stated above, no such integers exist. The proof is beyond a math drooler. What is
needed is a simpler proof that we all can enjoy. One is not given here. Other relation

may be found that could lead to a simple proof. So the road is open for any traveler to
try and transverse.
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