
Fibonacci Numbers 

 

 A definition of Fibonacci numbers will be given, then an example. Let the 𝑛𝑡ℎ  

Fibonacci number 𝐹𝑛  be defined by 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 where 𝐹0 = 0 and 𝐹1 = 1.. The first 
10 Fibonacci numbers can be easily derived 
 

n  0 1 2 3 4 5 6 7 8 9 
 
Fn 0 1 1 2 3 5 8 13 21 34 
 

 Consider 𝐹𝑛  where 𝑛 is an odd integer. 
 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 

=  𝐹𝑛−2 + 𝐹𝑛−3 + 𝐹𝑛−2 

= 2𝐹𝑛−2 + 𝐹𝑛−3 = 𝐹3𝐹𝑛−2 + 𝐹2𝐹𝑛−3 

= 2 𝐹𝑛−3 + 𝐹𝑛−4 + 𝐹𝑛−3 

= 3𝐹𝑛−3 + 2𝐹𝑛−4 = 𝐹4𝐹𝑛−3 + 𝐹3𝐹𝑛−4 

= 3 𝐹𝑛−4 + 𝐹𝑛−5 + 2𝐹𝑛−4 

= 5𝐹𝑛−4 + 3𝐹𝑛−5 = 𝐹5𝐹𝑛−4 + 𝐹4𝐹𝑛−5 

⋮ 

= 𝐹𝑚𝐹𝑛− 𝑚−1 + 𝐹𝑚−1𝐹𝑛−𝑚  

 
 From construction a pattern begins to emerge. The coefficients are generated 
just as Fibonacci numbers are generated and are Fibonacci numbers. The result is  
 

(1)    𝐹𝑛 = 𝐹𝑚𝐹𝑛−𝑚+1 + 𝐹𝑚−1𝐹𝑛−𝑚    𝑤ℎ𝑒𝑟𝑒  𝑛 ≥ 𝑚 
 
 
 This can be rigorously proved, which I will leave to those of rigor. 
 

 Taking 𝑚 = 𝑛 −𝑚 + 1 gives 𝑚 =
𝑛+1

2
, 𝑚 − 1 =

𝑛−1

2
  and  𝑛 − 𝑚 =

𝑛−1

2
 . 

Substituting these into Equation 1 yields 
 

(2)      𝐹𝑛 = 𝐹𝑛+1

2

2 + 𝐹𝑛−1

2

2      

 
 
 
 



 Any Fibonacci number with a odd index can be expressed as the sum of two 
consecutive Fibonacci numbers squared. Equation 2 can be written in terms of the 

index 𝑚 taking 𝑛 = 2𝑚 − 1, giving 
 

(3)             𝐹2𝑚−1 = 𝐹𝑚
2 + 𝐹𝑚−1

2  

𝐹𝑚
2 + 𝐹𝑚−1

2 = 𝐹2𝑚−1 

     
 Any two consecutive Fibonacci numbers squared is a Fibonacci number.  
 

 Let 𝑛 be an even positive integer. From the definition of Fibonacci number  
 

𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1 

𝐹𝑛 = 𝐹𝑛+1 − 𝐹𝑛−1 

=  𝐹𝑛+2

2

2 − 𝐹𝑛

2

2 −  𝐹𝑛

2

2 − 𝐹𝑛−2

2

2    𝑓𝑟𝑜𝑚 𝐸𝑞𝑢 2 

= 𝐹𝑛

2
+1−

2 𝐹𝑛

2
−1

2  

=  𝐹𝑛

2
+1 + 𝐹𝑛

2
−1  𝐹𝑛

2
+1 − 𝐹𝑛

2
−1  

=  𝐹𝑛

2
+1 + 𝐹𝑛

2
−1 𝐹𝑛

2
 

 
 

 Two relations of interest are 
 

(4)      𝐹𝑛 = 𝐹𝑛

2
+1

2 − 𝐹𝑛

2
−1

2    and 

 

(5)      𝐹𝑛 =  𝐹𝑛

2
+1 + 𝐹𝑛

2
−1 𝐹𝑛

2
 where 𝑛 is even. 

 

 These can be made to look more general by substituting 2𝑛 for 𝑛. Then 
 

(4a)        𝐹2𝑛 = 𝐹𝑛+1
2 − 𝐹𝑛−1

2  

                                                      =  𝐹𝑛+1 + 𝐹𝑛−1  𝐹𝑛+1 − 𝐹𝑛−1  

                                                      =  𝐹𝑛 + 𝐹𝑛−1 + 𝐹𝑛−1 𝐹𝑛       𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 

(5a)                                          𝐹2𝑛 =  2𝐹𝑛−1 + 𝐹𝑛 𝐹𝑛  

 

 

 



 Before commenting on Equation 4a, Fibonacci numbers will be generalize as 

follows. Let the 𝑛𝑡ℎ  general Fibonacci number 𝐺𝑛(𝑚, 𝑘) be defined by 
 

𝐺𝑛 𝑚, 𝑘 = 𝐺𝑛−1 𝑚, 𝑘 + 𝐺𝑛−2(𝑚, 𝑘)       𝑤ℎ𝑒𝑟𝑒       𝐺0 𝑚, 𝑘 = 𝑚    𝑎𝑛𝑑     𝐺1 𝑚, 𝑘 = 𝑘 
 
 As an example, the first 10 general Fibonacci numbers of 𝐺𝑛(3,7) are  
 

n  0 1 2 3 4 5 6 7 8 9 
 
Gn(3,7)    3 7 10 17 27 44 71 115 186 301 
 
 The general case can be reduced down to normal Fibonacci numbers. 
 

   𝑛  𝐺𝑛(𝑚, 𝑘) 
 
   0  m  m 

   1  k  mF0 + kF1 

   2  m+k  mF1 + kF2 

   3  m+2k  mF2 + kF3 

   4  2m+3k mF3 + kF4 

   5  3m+5k mF4 + kF5 

   6  5m+8k mF5 + kF6 

   ...  ... 

   n    mFn-1 + kFn 

 
 The coefficients are added in a way that fits the definition of Fibonacci numbers 
and the general pattern is seem. I will leave the rigor to the rigorous. In general (only 
positive numbers are being considered)  
 

(6)     𝐺𝑛 𝑚, 𝑘 = 𝑚𝐹𝑛−1 + 𝑘𝐹𝑛     
 
 

 From Equation (4a)    𝐹2𝑛 = 𝐹𝑛+1
2 − 𝐹𝑛−1

2  

                                                               =  𝐹𝑛 + 𝐹𝑛−1 
2 − 𝐹𝑛−1

2  

= 𝐹𝑛
2 + 2𝐹𝑛𝐹𝑛−1 + 𝐹𝑛−1

2 − 𝐹𝑛−1
2  

𝐹2𝑛 = 𝐹𝑛
2 + 2𝐹𝑛𝐹𝑛−1 

 

 From Equation (6)   𝐺𝑛 2,1 = 2𝐹𝑛−1 + 𝐹𝑛  

                                ⟹ 𝐹𝑛−1 =
𝐺𝑛 2,1 − 𝐹𝑛

2
 



 Substituting    𝐹2𝑛 = 𝐹𝑛
2 + 2𝐹𝑛  

𝐺𝑛  2,1 −𝐹𝑛

2
  

                                               = 𝐹𝑛
2 + 𝐹𝑛𝐺𝑛 2,1 − 𝐹𝑛

2 

= 𝐺𝑛 2,1 𝐹𝑛  

 

(7)      𝐹2𝑛 = 𝐺𝑛 2,1 𝐹𝑛     . 
 
 
 No even index Fibonacci number is a prime for which 𝐺𝑛(2,1) ≠ 1. So all 

Fibonacci numbers of even index except index 2 are non-prime. 
 
 From the definition of general Fibonacci number 
 

𝐺𝑛 = 𝐺𝑛−1 + 𝐺𝑛−2 = 𝐹1𝐺𝑛−1 + 𝐺2𝐹𝑛−2 

=  𝐺𝑛−2 + 𝐺𝑛−3 + 𝐺𝑛−2 

= 2𝐺𝑛−2 + 𝐺𝑛−3 = 𝐹3𝐺𝑛−2 + 𝐹2𝐺𝑛−3 

= 2 𝐺𝑛−3 + 𝐺𝑛−4 + 𝐺𝑛−3 

= 3𝐺𝑛−3 + 2𝐺𝑛−4 = 𝐹4𝐺𝑛−3 + 𝐹3𝐺𝑛−4 

= 3 𝐺𝑛−4 + 𝐺𝑛−5 + 2𝐺𝑛−4 

= 5𝐺𝑛−4 + 3𝐺𝑛−5 = 𝐹5𝐺𝑛−4 = 𝐹4𝐺𝑛−5 

⋮ 

= 𝐹𝑚𝐺𝑛− 𝑚−1 + 𝐹𝑚−1𝐺𝑛−𝑚  

 

 The 𝑚 can be any integer greater than 𝑛. If 𝑛 is odd, taking 𝑚 =
𝑛+1

2
  gives 

 
(8)     𝐺𝑛 = 𝐹𝑛+1

2

𝐺𝑛+1

2

+ 𝐹𝑛−1

2

𝐺𝑛−1

2

   . 

 

 If 𝑛 is even, taking 𝑚 =
𝑛

2
  gives 

 

(9)     𝐺𝑛 = 𝐹𝑛

2
𝐺𝑛

2
+1 + 𝐹𝑛

2
−1𝐺𝑛

2
    

 

 If 𝑚 = 𝑛, one gets 𝐺𝑛 = 𝐹𝑛𝐺1 + 𝐹𝑛−1𝐺0, which is the same as Equation 6. 
 
  



 Now, start with a large number and reduce it to the 𝑚 and the 𝑘 arguments of 𝐺0. 
To make it clearer the first two terms of the series 𝐺(𝑚, 𝑘) are 𝑚 and 𝑘. Let the last 

terms be 𝑞 and 𝑝, ie. 𝐺𝑛 𝑚, 𝑘 = 𝑝 and 𝐺𝑛−1 𝑚, 𝑘 = 𝑞. Then define 𝐻 such that  
 
(10)     𝐻0 𝑝, 𝑞 = 𝐺𝑛(𝑚, 𝑘)    
 
 Then 𝐻𝑛 𝑝, 𝑞 = 𝐺0(𝑚, 𝑘). Start with some number 𝑝. Take some number 𝑞 < 𝑝 

and work down to the base numbers 𝑚 and 𝑘 in a general Fibonacci series and find the 
general Fibonacci number for 𝑝, i.e. 𝑝 = 𝐺𝑛(𝑚, 𝑘). 
 
 From construction 
 

n  0  1 2 3 4   5 ...  n  
 
Hn(p,q) p q       p-q   -p+2q   2p-3q  -3p+5q ...      −1 nFn−1p +  −1 n−1Fn  
   

(11)    𝐻𝑛 𝑝, 𝑞 =  −1 𝑛𝑝𝐹𝑛−1 +  −1 𝑛−1𝑞𝐹𝑛        𝑤ℎ𝑒𝑟𝑒 𝐹−1 = 1 
   
 

 The index 𝑛 can continue to any large number. However, end indexing upward at 
the point 𝐻𝑛 𝑝, 𝑞 ≤ 𝐻𝑛+1(𝑝, 𝑞). Then 
 
(12)     𝐻𝑛 𝑝, 𝑞 = 𝐺0(𝑚, 𝑘) = 𝑚 

  𝐻𝑛−1 𝑝, 𝑞 = 𝐺1 𝑚, 𝑘 = 𝑘 
                     𝑘 > 𝑚 

 
 
 To play with some numbers take 𝑝 = 12345  and 𝑞 = 8000. The series for 𝐻 is 

  𝐻 12345,8000    →     12345        8000        4345        3655        690. 

One ends at 690 since 690 <  3655 − 690 . The terms go from 𝑛 = 0 to 𝑛 = 4. From the 

definition for 𝐻 one has 𝐻0 12345,8000 = 𝐺4(690,3655). 

 

 Taking 𝑞 = 7000 gives  

𝐻 12345,7000      →      12345         7000         5345         1655 

and  𝐻0 12345,7000 = 𝐺3(1655,5345). 

 
  



 What is of interest is the size of the series. For 𝑞 = 8000 there are five members 
in the series. For 𝑞 = 7000 there are four members. What value of 𝑞 will yield the most 
members and give the most basic general Fibonacci number for 𝑝. This is where we 
need to use far more highly abstract reasoning than a math drooler is accustom too. 
The gut feeling is that 𝐻(𝑝, 𝑞) will have the most members when 𝑞 = 𝛽𝑝 where 

𝛽 = lim𝑛→∞
𝐹𝑛

𝐹𝑛+1
= 0.618034. The value of 𝑞 will need to be rounded to an integer. For 

the value of 𝑝 above, using the gut feeling one has 𝑞 = 7629 or 7630, depending on 
how 𝑞 = 𝛽𝑝 is rounded, giving 
 

𝐻 12345,7629 = 12345  7629  4716  2913  1803  1110  693  417  276  141  135  6 
= 𝐺11(6,135) 

and 

𝐻 12345,7630 = 12345  7630  4715  2915  1800  1115  685  430  255  175  80 
= 𝐺10(80,175) 

 
 There are 12 numbers in the series for 𝐻(12345,7629). The series 
𝐻(12345,7630) has 11 terms. Is there any 𝑞 for which 𝐻 12345, 𝑞  has more than 

12 terms? The answer is no. So 𝑞 = 𝛽𝑝  gives the most basic, the series with the most 
terms, general Fibonacci number for 𝑝 = 12345. Is the gut feeling true in general? That 
is not known. 
 

 Another gut feeling is that lim𝑛→∞
𝐺𝑛−1(𝑚,𝑘)

𝐺𝑛 (𝑚,𝑘)
= 𝛽   ∀   (𝑚, 𝑘). This is easy to prove 

using Equation 6.  
 
  Now that there are some implements to navigate with, it is time to walk the 
landscape. The landscape is wide with many paths. One path is sufficient for today. The 

hiking boots used will be Equation 12. A value will be given for 𝑝, the value for 𝑞 will 
vary and the corresponding values for 𝑚 will be plotted. Let 𝑝 = 12345 and let 𝑞 =
1 𝑡𝑜 𝑝. Plotting 𝑚 versus 𝑞 gives the following plot. 
 
 
 
 
 
 
 
 
 

 

 

 

 



 
 Expanding the plot gives 
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As the plot is expanded it looks self similar. Greater expansion gives the following. 
 
 

 
 
 
 

 The self similar nature ends on extreme magnification. However, it must be kept 

in mind that only integers are being considered, i.e. 𝑞 varies in integer values. The same 
computations can be performed with q varying in real numbers.  
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  For real 𝑞 the curve is self similar about some point magnified as much as 

one likes. There is placed a red line at that point. No matter how fine an area examined 

it will look the same. How does one know exactly where that point is? Well, it is at 𝛽𝑝 

where 𝛽 is given above,  𝛽 = lim𝑛→∞
𝐹𝑛

𝐹𝑛+1
. In the present case with 𝑝 = 12345 the 

line about which the curve is self similar is 𝑞 = 𝛽𝑝 = 𝛽 × 12345 = 7629.6, which 

looks in the ball park in the plot above.  
 
 This is one path traveled on the mathematical landscape of Fibonacci numbers. 
Many other paths can be taken, but not now. It is time to move on to other hills. 
 

Math Drooler 1 Jan 2009 
Revised and corrected 20 Dec 2013 

 

7620 7622 7624 7626 7628 7630 7632 7634 7636 7638 7640
0

50

100

150

200

250

300

350

400

q

m


