
Dynamic Series 
 

  
To put the study of series on a firm foundation three propositions are needed. 

 
1. Little man cannot play God with the infinite. The Creator will let little man see the 

infinite but will not let him touch it. This is important, attempted violations of it 
have led to some strange conclusions. 

 
2. The equal sign “=” comes in two flavors, strong and weak. For the strong flavor, 

for any argument the value on the right side of the equal sign is equal to the 
value on the left side and vice versa. For the weak equal sign, there will be a 
range of arguments such that one side will produce a value and the other side 
will blow up to infinity. There will also be a range of arguments where both sides 
will be the same. The second necessary proposition is: The weak equal sign 
does not exist in rigorous mathematics.  

 
3. Ellipsis dots is a symbol of grammar, not of math. While grammar has its element 

of rigor, math must be totally rigorous. Symbols of grammar can be incorporated 
into math only after they have been rigorously defined. Ellipsis dots have not 
been so defined. A rigorous definition of ellipsis dots is: Ellipsis dots when used 
in a series represent a finite number of terms of a series where the terms the 
ellipsis dots represent are clearly understood from the terms that precede the 
ellipsis dots and the term or terms that follow it. 

 
 With the propositions some examples can be looked at where unduly strange 
conclusions have been made. I will look at one here and then examine one that I take 
from the book “Prime Obsession”.  
 
 A simple series many of us have seen in high school, at least in the high schools 
of forty years ago, is  
 

1

1 + �
= 1 + � + �� + �� + ⋯  

           
This violates all three propositions given above. The domain of the term on the left is 
(� < 1,� > 1), i.e. (all � such that � ≠ 1). The domain on the right is (� < 1). This 
violates Proposition 2, which says that there is no weak equal sign. The ellipsis violates 
Proposition 3, which states it can only represent a finite number of terms and must be 
followed by at least one term. The ellipsis also violates Proposition 1 in that it somehow 
(in some vague sense) is infinity, which we cannot touch. 
 
 
 
 
 



 Using the three propositions the proper relation is 
 

1

1 + �
= 1 + � + �� + �� + ⋯ +

��

1 − �
  ��� ��� � ≥ 0 

 
In this relation no claim is made that the ellipsis dots touch infinity. For 0 ≤ � < 1  the 
last term becomes vanishingly small as � gets larger. For � > 1 the sum of the terms on 
the right become increasingly larger as � gets larger. The last term becomes 
increasingly negatively large in such a way as to cancel all of the sum up to it, leaving 
�

�� �
 .  All is well in the realm of math with no misbehavior. 

 
 The next example is from the book “Prime Obsession” and is what encouraged 
the investigation of the matter of series. The author presents an example of what 
mathematicians call a “conditionally congruent” series. It applies to series whose limit 
value depends on the order in which the terms are written. The example given is for the 
series of ln (2). It goes like so: 
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 In light of the propositions this is immediately rejected. If true math is inconsistent 
and the sciences bui lt on math are inconsistent also. Of course, this is just a 
mathematician’s parlor trick, and not a very good one at that. The proliferation of twice 
as many minus signs as plus signs in the second and third equations is an obvious clue 
to the trick. Let’s look at this with the three propositions in force. 
 
 
 
 
 
 
 
 
 
 



 Writing the series for ln (2), the first 10 terms gives 
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where ��� is the remainder of ln(2)  after the ���  term. This will be rearranged into three 
lines. The first line will be what was devised above. The second line will be the terms 
not used in line 1 and not part of the remained. The third line will be the remainder. We 
then have 
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 Let’s now add on more terms. We can add any number of terms we wish, but 
let’s add four terms to keep things well-kept. Doing this results in 
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 Adding another four terms yields 
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 We see the pattern and can write the three lines more generally for the first   
� = 2 + 4�  terms where � is any positive integer.  
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 As � gets larger the first line approaches 

�

�
ln(2) as we know. This is the mystical 

value it is claimed the rearrangement of the terms leads to. The third line can be looked 
at using our desk top number cruncher. As � gets larger, the sum of say the next one 
million terms after the ���  term appears to approach zero. Of course, these are not 
definite conclusions from mathematical theory, but are ever closer approximations from 
mathematical experiment using our desktop number smasher, somewhat analogous to 
a physicist getting ever closer approximations to some physical quantity using their 
atom smashers. Experiment can show the wonder of that which the theorist can 
abstract to boredom, at least in physics. Line two is the most interesting. 
 
 
 
 
 
 
 



 Line (2d) is a series somewhat different than any series I have encountered in 
my limited experience - it is dynamic. In most series the first term is constant and the 
���   term can be written as a function of �. The value of the series, the sum of the 
terms, either approaches some finite number or infinity. The terms remain static while 
the sum changes as more terms are considered, that is as � increases. The limit to 
which the series in line two approaches is also investigated by increasing �, but here � 
has a different usage. It does not signify the ���  ther in the series. It signifies the range 
of the series and the value of each term with both the first and last terms changing as 
���  changes. As � increases the first term in the series in line two becomes a higher 
term in the series for ln(2) and slips toward infinity out of touch. By Proposition 1 the 
Lord does let us see it though. Computing the sum of the series in line two for 
increasing �, one finds that the value of the series approaches 

�

�
ln(2).  It is the missing 

�

�
ln(2) in the rearrangement of the terms in the series for ln(2).  “Conditionally 

congruent” does not apply to this series and I suspect it does not apply to any series. It 
would seem that to change the value of a series of numbers by changing the order of 

the terms violates the laws of arithmetic. It is interesting that the series for 
�

�
ln(2) can be 

static or dynamic. I suspect there is a rich world of dynamic series that has not been 
investigated.  
 
 Let’s leave the question of “conditionally congruent” in relation to the series for 
ln (2) and simplify things a bit. In the dynamic series for 

�

�
ln (2), replace 

�

�
 with �. This 

can be done without losing generalization. It just means one is looking at a different 
series within the dynamic series. Instead of  
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 Both of these series are within the dynamic series for 

�

�
ln (2). (When I say 

dynamic series, I mean sequences of series, which in the present case are the series 
defined by the rules in line (2d) for 

�

�
ln (2). With the knowledge gained, let’s leave the 

above behind and look at a simpler, maybe the simplest, dynamic series. 
 
 
 
 
 
 



 
 Define a dynamic series ��(�:�:�) by  
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   � is a monotonically increasing function of � . 

 

 Call lim� → � ��(�:�:�) the value of ��(�:�:�) and denote it by �� (�:�:�). 
 
 The dynamic series for 
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ln (2) can be written, somewhat awkwardly, as 
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 Having an idea of dynamic series, the task of investigating them can be made a 
little simpler by considering a simpler case. Consider the dynamic series 
 ��(�:1:�). From the definition above 
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 Looking at ever larger �, one finds that ��(�:1:�) approaches ln(2). Can it be 
proved that ��(�:1:�)= ln(2)? Such a proof has not been looked at and may be 
difficult. It is suspected that �� (�:1:�)= ln(2).  (From here on if � = 1, write ��(�:�) with 
the understanding that ��(�:�) = ��(�:1:�).) 
 
 What one would first like to know is if  �� (�:�:�) is finite. It is not as easy to show 
this as a simple ratio test for static series, but is not too much more difficult for a certain 
simple dynamic series such as ��(�:�). We know from construction above that 
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�
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� is finite and likely has a value of 

�

�
ln(2). This was not directly proved. 

Leaving the question of proof, which math droolers can do, to others, turn instead to the 
desktop number cruncher. The plot below shows ��(�:�) plotted against � and 
compared to ln(2). 
 
 
    
 
 
 

 



 
 What if a term is added to or taken away from the series? Below are plots of 
��(�:� + 1) and �� (�:� − 1). (It will loosely be said that �� is being plotted, the meaning 
being obvious.)  
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 Now look at ten terms added or taken away. Below are plots of ��(�:� + 10)  
and �� (�:� − 10). 
 
 
 

 
 

 

 Adding or taking away terms does not seem to change the value of the dynamic 
series. In fact 
 

��(�:�) = ��(�+ �:� + �)  �ℎ��� � > �  
 
 A formal proof is not needed. Clearly, the difference between the dynamic series 
in the plot above is a finite number of terms, each of which approaches zero as � gets 
larger.  
 
 In Figure 3 it is noticed that the dynamic series approach ln(2) from different 
directions. ��(�:� + 10)  approaches from above and ��(�:� + 10) approaches from 
below. Where does the approach change? That is, for what � in ��(�:� + �) does the 
approach change from above to below? Figure 4 shows ��(2000:2000 + �)− ln(2) 
for − 10 ≤ � ≤ 10.  
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The crossing point is seen to be between � = 1 and � = 2. Expanding Figure 4 

and drawing a line through the points gives Figure 5 below. 
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 The line appears to cross the zero point at � = 1.5. If the figure is further 
enlarged, it will be found that the crossing point is just left of � = 1.5. However, taking 
larger � puts the crossing point ever closer to � = 1.5. The point at which the line 
crosses at ��(�:� + �)− ��(2) appears to approach � = 1.5 as � → ∞ . For finite � the 
crossing point is near � = 1.5. Remember, the crossing point is the � for which  
��(�:� + �). But, � + � + 1 is the number of terms in ��(�:� + �). A term is either there 
or not there. What does half, or a fraction, of a term mean? That fraction of a term is 
irrational since ln(2) is irrational and ��(�:� + �) is rational for any �. The half term’s 
value for any � is ��(�:� + �)− ln(2) . The crossing point is just a curiosity off the trail 
we are hiking and will be left as that.  
 

 Before leaving our day hike in the foothills of the math world consider ��(�:2�).  
What one will find is that ��(�:1:2�) = ln(3). In general one will find that  
��(�:1:� + �)= ln(� + 1) where � is a positive integer. To be more bold, 
��(�:1:�����(� + �))= ln(� + 1) where � > 1 i.e. � is any positive real number greater 
than 1. The third term is rounded because the number of terms is an integer. We still do 
not know what a fraction of a term means. One can also find, at least experimentally, 
that  − ��(��:1:� − ��)= ln(�) �ℎ��� 0 < � < 1.  
 
  Define the dynamic series for the �� function in a way that is slightly removed 
from its physical founding but easier to work with: 
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Then ��(�:��)= ln(�)�ℎ��� � ≥ 1  and  − ��(��:�)= ln(�)�ℎ��� 0 < � < 1 .   
 
 Recall that a dynamic series is a sequence of series related to an integer � such 
that as � gets larger the first and last terms in the series move to the right along the 
number scale. We lose touch of the series but we can see as its value approaches a 
finite number. The sequence of series examined was such that to get to the next 
member series from the current one a term was removed from the front and terms were 
added to the end. See below for two consecutive members of the dynamic series 
��(�:2�).  
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 This type of dynamic series will be called single track. The table below shows the 
thinking behind the name. The �′� show the positions along the track for three 
consecutive  series of ��(�:2�). The series moves away and spreads out similar to a 
wave packet moving in time. 
 



 
 
 
 

Track  1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ... 
n=3    x x x x       
n=4     x x x x x     
n=5      x x x x x x   

  
  

 For a single track dynamic series a test can be made to determine if its value is 
finite. As � → ∞  if the ratio of the added terms to the removed term as � increases to 
� + 1 is 1, the dynamic series approaches a finite value. For ��(�,2�) that ratio is  
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 An example of a multi track dynamic series is  
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 All the terms will vary from one series to the next as � increases while �̅(�)= 1.5  
 

 There are likely many interesting dynamic series to be discovered. But the sun 
will be going down soon and I must get back to the trail head and return to home after a 
nice hike in the lower trails on the landscape of the math world.  
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