
Triangle Numbers 
 
 A triangle number 𝑛, 𝑤𝑕𝑒𝑟𝑒 𝑛 ≥ 0  is defined by 
 

(1)     𝑛∆ = 1 + 2 + 3 + ⋯ + 𝑛. 
 
 One can see why such numbers are called triangle by physically looking at one 

such number, say 4∆ . 
 
 
 
 
 
 
 
 
 As a new row is added the number of dots in the row is increased by 1. The 
number of dots along each side is the same. 
 
 It can be easily shown that  
 

(2)      𝑛∆ =
𝑛(𝑛+1)

2
.     . 

 
 

 This can be naturally extended to  −𝑛 ∆ , where 𝑛 ≥ 0, by 
 

(3)      (−𝑛)∆ =
(𝑛−1)𝑛

2
.    . 

 
 The illustration above is a physical example of a triangle number. What is the 
physical example of a negative triangle number? Because the concept of a negative 
number is so familiar, it is not thought of as being abstract. Negative numbers was a 
difficult concept to accept when it first appeared. What is less than nothing? A square 
number can be physically looked at as a square array of say dots. What is the physical 
appearance of a negative number squared? The same applies to triangle numbers. We 
have gone from the physical to the abstract. One can easily slip from math to 
philosophy. In that philosophy is the playground of those who don’t know but want to 
sound like they do and nothing ever comes of it, on to something concrete. 
 
 Now that we have the definitions down, let’s look at some relationships. We can 

start with an easy one. Consider   𝑐𝑑 ∆  and proceed as follows: 
 
 

1 

 



 𝑐𝑑 ∆ =
 𝑐𝑑  𝑐𝑑 + 1 

2
 

=
𝑐𝑑  𝑐 + 1  𝑑 + 1 −  𝑐 + 1  𝑑 + 1 + 𝑐𝑑 + 1 

2
 

=
𝑐𝑑  𝑐 + 1  𝑑 + 1 − 𝑐𝑑 − 𝑐 − 𝑑 + 1 

2
 

=
𝑐𝑑  

 𝑐 + 1  𝑑 + 1 
2 −

 𝑐 + 1  𝑑 + 1 
2 + 𝑐𝑑 + 1 

2
 

=
𝑐 𝑐 + 1 

2

 𝑑 + 1 

2
+ 𝑐𝑑  −

𝑐𝑑 + 𝑐 + 𝑑 + 1

4
+

𝑐𝑑 + 1

2
  

= 𝑐∆𝑑∆ + 𝑐𝑑  
−𝑐𝑑 − 𝑐 − 𝑑 − 1 + 2𝑐𝑑 + 2

4
  

= 𝑐∆𝑑∆ + 𝑐𝑑  
𝑐𝑑 − 𝑐 − 𝑑 + 1

4
  

= 𝑐∆𝑑∆ + 𝑐𝑑
 𝑐 − 1  𝑑 − 1 

4
 

= 𝑐∆𝑑∆ + 𝑐𝑑
 𝑐 − 1 𝑐

2

 𝑑 − 1 𝑑

2
 

= 𝑐∆𝑑∆ +  𝑐 − 1 ∆ 𝑑 − 1 ∆ 
 

 
 

(4)     𝑐𝑑 ∆ = 𝑐∆𝑑∆ +  𝑐 − 1 ∆ 𝑑 − 1 ∆  

  
 
This can be compared with the similar relationship for squared numbers: 
 

 𝑐𝑑 2 = 𝑐2𝑑2 . 
 
The notation with the triangle symbol being in the same place the power symbol resides 
was done owing to the similarity of the relationships. 
 
  



 

 

 Take 𝑐 ≥ 𝑑 and manipulate the terms as follows: 
 
 

 𝑐𝑑 ∆ = 𝑐∆𝑑∆ +  𝑐 − 1 ∆ 𝑑 − 1 ∆  𝑤𝑕𝑒𝑟𝑒 𝑐 ≥ 𝑑 
𝑐∆𝑑∆ =  𝑐𝑑 ∆ −  𝑐 − 1 ∆ 𝑑 − 1 ∆ 

=  𝑐𝑑 ∆ −   𝑐 − 1  𝑑 − 1  ∆ +  𝑐 − 2 ∆ 𝑑 − 2 ∆ 
=  𝑐𝑑 ∆ −   𝑐 − 1  𝑑 − 1  ∆ +   𝑐 − 2  𝑑 − 2  ∆ −  𝑐 − 3 ∆ 𝑑 − 3 ∆ 
⋮ 
=  𝑐𝑑 ∆ −   𝑐 − 1  𝑑 − 1  ∆ +   𝑐 − 2  𝑑 − 2  ∆

− ⋯ −1 𝑑−2  𝑐 −  𝑑 − 2   𝑑 −  𝑑 − 2   
∆

+  −1 𝑑−1 (𝑐 − (𝑑 − 1) ∆ 𝑑 −  𝑑 − 1  
∆

 

=  𝑐𝑑 ∆ −   𝑐 − 1  𝑑 − 1  ∆ +   𝑐 − 2  𝑑 − 2  ∆

− ⋯ −1 𝑑−2  𝑐 − 𝑑 + 2  2  ∆ +   −1 𝑑−1 (𝑐 − 𝑑 + 1 ∆ 
 

 
 
(5)  

𝑐∆𝑑∆ =  𝑐𝑑 ∆ −   𝑐 − 1  𝑑 − 1  ∆ +   𝑐 − 2  𝑑 − 2  ∆

− ⋯ −1 𝑑−2  𝑐 − 𝑑 + 2  2  ∆ +   −1 𝑑−1 (𝑐 − 𝑑 + 1 ∆ 
 
 

 
 What we find is that the produce of two triangle numbers can be expressed as a 
series of triangle numbers. Not earth shaking, but interesting. Maybe something a little 
more interesting can be found. 
 
-------------------------------------------------------------------------------------------------------------------- 
 
  



 For square integer numbers 𝑎 = 𝑏2  one gets 𝑏 = 𝑎
1

2  
  that is either an integer or irrational number. Is there a similar relation for triangle 

numbers? That is, if 𝑐 = 𝑑∆  what does 𝑑 = 𝑐
1

∆   look like? To find out do the following: 
 

𝑐 = 𝑑∆ 

=
𝑑 𝑑 + 1 

2
 

𝑑2 + 𝑑 − 2𝑐 = 0 

𝑑 =
−1 ±  1 − 4 −2𝑐  

1
2  

2
 

 

(6)     𝑐
1

∆ =
−1± 1+8𝑐 

1
2 

2
 

 
 

 
 This can be further manipulated: 
 
 

2𝑐
1

∆ = −1 ±  1 + 8𝑐 
1

2  

 1 + 8𝑐 
1

2 = ±(2𝑐
1

∆ + 1) 

 
 

 Let  𝑏 = 1 + 8𝑐 then 
 
 

(7)     𝑏
1

2 =  2  
𝑏−1

8
 

1
∆ 

+ 1  

     
 

 An observation can be made from equation (6). If 𝑐 is a triangle number, then 

𝑐
1

∆  is an integer and it follows that 1 + 8𝑐 is a square odd number. It can also be shown 
that if 1 + 8𝑐 is a square odd number than 𝑐 is a triangle number. Or, if 𝑏  is a square 

odd number then 
𝑏−1

8
 is a triangle number.  

------------------------------------------------------------------------------------------------------------------ 
 
 It should be noted that triangle numbers were constructed from integers. 
However, in the equations above one can put in any real number. A triangle number 

was defined as the sum of a series and it was found to be equal to 
𝑐(𝑐+1)

2
 . Any number 

for 𝑐 will yield a value for the term, extending the concept of ∆. What follows can be 
applied to all real numbers. 
  
 



Consider  𝑎 + 𝑏 ∆  where 𝑎 > 𝑏.  
 

 𝑎 + 𝑏 ∆ = 1 + 2 + 3 + ⋯ + 𝑏 + ⋯ + 𝑎 +  𝑎 + 1 + ⋯ +  𝑎 + 𝑏  
= 𝑎∆ +  𝑎 + 1 +  𝑎 + 2 + ⋯ +  𝑎 + 𝑏  
= 𝑎∆ +  𝑎 + 𝑎 + ⋯𝑎 +  1 + 2 + ⋯ + 𝑏    𝑏 𝑚𝑢𝑛𝑏𝑒𝑟 𝑜𝑓 𝑎′ sin 𝑠𝑒𝑐𝑜𝑛𝑑 𝑡𝑒𝑟𝑚 
= 𝑎∆ + 𝑎𝑏 + 𝑏∆ 

 

(8)     𝑎 + 𝑏 ∆ = 𝑎∆ + 𝑎𝑏 + 𝑏∆ 
 

 
 

 
 This can be compared to the similar relation for squaring the sum of two 
numbers. 

 𝑎 + 𝑏 2 = 𝑎2 + 2𝑎𝑏 + 𝑏^2 
    . 
----------------------------------------------------------------------------------------------------------------- 
 
 For the Math Drooler, discovering relationships or properties physically or by 
construction is more interesting than formal abstract proof. And it may be more 
instructive, giving a physical feeling behind the math. A good example of a physical 
proof is the following. 
 

 Consider a square composed of 25 dots. 
 

 
 
 
 
 
 
 
 
 
 
 
 

The dots are shaded to show two triangles. One triangle has a side of 5 and the other 

has a side of 1 less than 5. So we see that 52 = 5∆ + 4∆. In general 
 

(9)     𝑛2 = 𝑛∆ +  𝑛 − 1 ∆ 
 
 And that is all the proof needed, although the same could be easily shown from 
the formula for a triangle number and would more satisfy the discriminating 
mathematician.  
-------------------------------------------------------------------------------------------------------------------- 

 



 Now, consider 𝑛 = 𝑎𝑏 where 𝑏 > 2𝑎 and 𝑎, 𝑏 are odd integers. Let 𝑘 = 𝑏 − 2𝑎. 
Then 𝑘 > 0 and 𝑏 = 2𝑎 + 𝑘. The following may be shown. 
 

𝑛 = 𝑎𝑏 
= 𝑎 2𝑎 + 𝑘  
= 𝑎 2𝑎 + 1 + 𝑘 − 1  

=
 2𝑎   2𝑎 + 1 

2
+ 𝑎 𝑘 − 1  

=  2𝑎 ∆ +  2𝑎 
𝑘 − 1

2
 

=  1 + 2 + ⋯ + 2𝑎 +  
𝑘 − 1

2
+

𝑘 − 1

2
= ⋯ =

𝑘 − 1

2
    2𝑎 𝑡𝑒𝑟𝑚𝑠  

=  1 +
𝑘 − 1

2
 +  2 +

𝑘 − 1

2
 + ⋯ +  2𝑎 +

𝑘 − 1

2
  

=  2𝑎 +
𝑘 − 1

2
 
∆

−  1 +
𝑘 − 1

2
− 1 

∆

 

=  2𝑎 +
𝑏 − 2𝑎 − 1

2
 
∆

−  
𝑏 − 2𝑎 − 1

2
 
∆

   𝑠𝑖𝑛𝑐𝑒 𝑘 = 𝑏 − 2𝑎 

=  
𝑏 − 1

2
+ 𝑎 

∆

−  
𝑏 − 1

2
− 𝑎 

∆

 

 
 

 

(10)     𝑛 =  
𝑏−1

2
+ 𝑎 

∆

−  
𝑏−1

2
− 𝑎 

∆

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Consider 𝑛 = 𝑎𝑏 where 𝑏 < 2𝑎 and 𝑎, 𝑏 are odd integers.  Let 𝑘 = 2𝑎 − 𝑏. Then 
𝑘 > 0 and 𝑏 = 2𝑎 − 𝑘. Proceeding as was done above: 

 
𝑛 = 𝑎𝑏 

= 𝑎 2𝑎 − 𝑘  
= 𝑎 2𝑎 + 1 − 𝑘 − 1  

=
 2𝑎  2𝑎 + 1 

2
+ 𝑎 𝑘 + 1  

=  2𝑎 ∆ +  2𝑎 
𝑘 + 1

2
 

=  1 + 2 + ⋯ + 2𝑎 −  
𝑘 − 1

2
+

𝑘 − 1

2
+ ⋯ +

𝑘 − 1

2
    2𝑎 𝑡𝑒𝑟𝑚𝑠  

=  1 −
𝑘 + 1

2
 +  2 −

𝑘 + 1

2
 + ⋯ +  2𝑎 −

𝑘 + 1

2
    𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑠𝑒𝑟𝑖𝑒𝑠 

=  2𝑎 −
𝑘 + 1

2
 
∆

−  1 −
𝑘 + 1

2
− 1 

∆

 

=  2𝑎 −
2𝑎 − 𝑏 + 1

2
 
∆

−  −
2𝑎 − 𝑏 + 1

2
 
∆

   𝑠𝑖𝑛𝑐𝑒 𝑘 = 2𝑎 − 𝑏 

=  
𝑏 + 2𝑎 − 1

2
 
∆

−  
−2𝑎 + 𝑏 − 1

2
 
∆

 

=  
𝑏 − 1

2
+ 𝑎 

∆

−  
𝑏 − 1

2
− 𝑎 

∆

 

=  
𝑏 − 1

2
+ 𝑎 

∆

−   𝑎 − 1 −
𝑏 − 1

2
 

∆

   𝑤𝑕𝑒𝑟𝑒  −𝑛 ∆ =  𝑛 − 1 ∆ 

 
 

(10)     𝑛 =  
𝑏−1

2
+ 𝑎 

∆

−  
𝑏−1

2
− 𝑎 

∆

     𝑤𝑕𝑒𝑟𝑒 𝑏 < 2𝑎 𝑎𝑛𝑑 𝑎, 𝑏 𝑎𝑟𝑒 𝑜𝑑𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 

 

   

(10b)  𝑛 =  
𝑏−1

2
+ 𝑎 

∆

−   𝑎 − 1 −
𝑏−1

2
 
∆

      

 
     
 Any number that can be factored into two odd integers is the difference of two 
triangle numbers. This same relation, which is easier to prove, holds for the difference 
of square numbers. That is, any number that can be factored into two odd integers is 
the difference of two square numbers. 
 
 Triangle numbers may be a little more interesting in that there appears to be 
more than one combination the factors can be dissolved into: 
 
 
 
 



(11)      𝑛 = 𝑎𝑏 

=  𝑏 +
𝑎 − 1

2
 
∆

−  𝑏 −
𝑎 + 1

2
 
∆

 

 
      . 
 
 I will leave (11) to the reader to prove. 
 
 Look at Equations 10 and 11 closer as they are rewritten below. 
 

(10)     𝑛 =  
𝑏−1+2𝑎

2
 
∆

−  
𝑏−1−2𝑎

2
 
∆

 

 

(11) 𝑛 =  
𝑎−1+2𝑏

2
 
∆

−  
−𝑎−1+2𝑏

2
 
∆

 

      
 

 In the derivations above the number 𝑛 was composed of two odd factors 𝑎 and 𝑏. 
Although I did not state it, 𝑏 was considered to be the greater of the factors and either 

greater than or less than 2𝑎. Equations 10 and 11 give two distinct results for 𝑛 = 𝑐∆ −

𝑑
∆

. Symmetry is esthetically pleasing in mathematics and in the physical world. What 

would be esthetically satisfying would be to replace 𝑎 and 𝑏 in Equation 10 and obtain 
Equation 11. That is not the case. In the first term on the right of each equation 𝑎 can be 

replaced with 𝑏 and 𝑏 with 𝑎. The first term is symmetric with 𝑎 and 𝑏. The second term 
in each equation is not as cooperative. In that term 𝑎 is replaced with −𝑏 and 𝑏 is 
replaced with −𝑎. This is a symmetry, but not as pleasing as in the first term. The first 
and second terms have different symmetries. This is not something expected in simple 
math as enjoyed here, but in the less friendly world of physics.  
 
 Before moving on a few results can be listed. Rewrite Equations 10 and 11 as 
 

𝑛 = 𝑎𝑏 
𝑛 = 𝑐1

∆ − 𝑑1
∆  𝑓𝑟𝑜𝑚 10 

𝑛 = 𝑐2
∆ − 𝑑2

∆  𝑓𝑟𝑜𝑚 11 
      
 
 The following relations can be stated: 
 
 

𝑐1 =
𝑏 − 1

𝑎
+ 𝑎               𝑑1 =

𝑏 − 1

2
− 𝑎 

𝑐2 = 𝑏 +
𝑎 − 1

2
              𝑑2 = 𝑏 −

𝑎 + 1

2
 

𝑐2 =
5𝑐1 + 3𝑑1 + 2

4
       𝑑2 =

3𝑐1 + 5𝑑1 + 2

4
 

 



 

 𝑐1 and 𝑑1 are constrained by the factors of 𝑛, 𝑎 and 𝑏, which are taken to be odd 
numbers. From either relation 

𝑐1 − 𝑑2 = 2𝑎 
𝑐1 + 𝑑1 = 𝑏 − 1 

 

the constraint on 𝑐1  and 𝑑1is that they are either both even integers or both odd 
integers.  
------------------------------------------------------------------------------------------------------------------- 
 

 Define a triangle offset number to be 𝑐∆ − 𝑑∆. Use the notation  ∆𝑑
𝑐 = 𝑐∆ − 𝑑∆. 

 
 It can be written 
(12)     𝑛 = 𝑎𝑏 = ∆𝑑 

𝑐   ∀  𝑜𝑑𝑑 𝑎, 𝑏      
 

and shown that    ∆𝑑 
𝑐 =

 𝑐−𝑑 (𝑐+𝑑+1)

2
 

   .  
Equation 12 says that any number that can be factored into two odd integers is an offset 

triangle number. The number 1 being one of the factors, such as in 𝑛 = 7 = 7 × 1 , is the 

trivial case in that every number is a triangle number of offset 1.  
-------------------------------------------------------------------------------------------------------------------- 
 

 A triangle number 𝑛 is the sum of all integers from 1 to 𝑛. Instead of summing all 
the numbers, what if 𝑛 numbers are summed from 1 to 𝑛 spaced by 2. What if the 

spacing is 3 or say some 𝛽. The notation and definition will be 
 

(13)  𝑛∆𝛽 = 1 +  1 + 𝛽 +  1 + 2𝛽 +  1 + 3𝛽 + ⋯ +  1 +  𝑛 − 1 𝛽  
 

 If 𝛽 = 0 then the sum is just 𝑛 , 𝑛∆0 = 𝑛. If 𝛽 = 1 then the sum is a triangle 

number, 𝑛∆1 = 𝑛∆. In general 
 

𝑛∆𝛽 =   1 +  𝑗 − 1 𝛽 

𝑛

𝑗 =1

 

=    1 − 𝛽 + 𝛽𝑗 

𝑛

𝑗 =1

 

= 𝑛 1 − 𝛽 + 𝛽𝑛∆ 
 
 

(14)     𝑛∆𝛽 = 𝑛 1 − 𝛽 + 𝛽𝑛∆ 

         =
𝑛(𝛽𝑛 − 𝛽 + 2)

2
 

 

 Letting 𝛽 = 2 gives 𝑛∆𝛽 = 𝑛2. 



 
------------------------------------------------------------------------------------------------------------------ 
 
 
 
 Before leaving this a few brief comments on pyramid numbers. Pyramids can 
have various polynomial bases. A number formed from a pyramid with equilateral sides 
and an equilateral base can be the sum of triangle numbers. For a square base the 
number can be formed from the sum of squares. Notation can be made and this defined 
as 
 

 (15)     𝑁∆∆
= 1 + 2∆ + 3∆ + ⋯ + 𝑁∆ 

                𝑁∆2
= 1 + 22 + 32 + ⋯ + 𝑁2 

     
 

Where the ∆ and the 2 are for triangle and square bases of the pyramid. It can be 
shown that 

𝑁∆2
= 2𝑁∆∆

+ 𝑁∆. 
------------------------------------------------------------------------------------------------------------------- 
 
 Triangle numbers have been extended to real numbers, and can further be 
extended to complex numbers. Unfortunately, when dealing with complex numbers a 
simple visual picture cannot be made. Abstractions have to be made, which are not 
what the Math Drooler likes to play with. Below, the relation for a triangle number will be 
used without reference to visualization.  
 
 Any natural number, positive or negative, multiplied by itself yields a positive 

number. This can be written 𝑥2 = 𝑛 ≥ 0. What if 𝑛 = −1? The number 𝑥 will not be a 

natural number but could surely exist. It is given the letter 𝑖 and is defined by 𝑖 =  −1. 
As when taking the square of a natural number, taking the triangle of a natural number 

always yields a positive number. What if 𝑘∆ = −1? Then 
 

  𝑘 =  −1 
1

∆  

𝑘∆ = −1 =
𝑘 𝑘 + 1 

2
 

𝑘2 + 𝑘 + 2 = 0 
 

(15)     𝑘 =
−1±𝑖 7

2
 

      

 Using 𝑘 instead of  𝑖 , complex numbers can be written 
 

𝑛 = 𝑎 + 𝑘𝑏 =  𝑎, 𝑏 ∆ 
 

 



 The relation between triangular complex numbers and normal complex numbers 

is       𝑎, 𝑏 ∆ =  𝑎 −
𝑏

2
, ±

 7

2
𝑏  

 
 

 Now, consider a complex number  𝑛 = 𝑥 + 𝑖𝑦 . Using the standard equation for a 
triangular number 
 

𝑛∆ =
 𝑥 + 𝑖𝑦  𝑥 + 𝑖𝑦 + 1 

2
 

=
𝑥2 − 𝑦2 + 𝑥

2
+ 𝑖

 2𝑥𝑦 + 𝑦 

2
 

=
 𝑥2 + 𝑥 −  𝑦2 + 𝑦 + 𝑦

2
+ 𝑖  𝑥𝑦 +

𝑦

2
  

=  𝑥∆ − 𝑦∆ +
𝑦

2
 = 𝑖  𝑥𝑦 +

𝑦

2
  

 
 
 

(16)    𝑛∆ =  𝑥∆ − 𝑦∆ +
𝑦

2
 = 𝑖  𝑥𝑦 +

𝑦

2
     

 
 
 The fun comes when we pull out our math software and make some pictures. 

Take a complex number 𝑧1 and do a triangle operation on it obtaining a complex 
number 𝑧2. Do a triangle operation on that number obtaining 𝑧3 and so forth. To see 
where this leads consider a few different starting points and do 20 iterations. Start with 

𝑧1 =  
1

2
,

1

2
 . Using the math software the following plot is generated. The blue line is 

𝑟𝑒𝑎𝑙(𝑧)  and the red line is 𝑖𝑚𝑎𝑔(𝑧). 
 

 



 We see that both the real and imaginary parts of 𝑧 tend to zero. Not real 
interesting. Using the math software again start with 𝑧 = (1.2, 1.5). We get the plot 
below.  
 

 

 

 

 Now the real part of 𝑧 went to infinity and the imaginary part went to negative 
infinity. Again this is not too interesting. Out of curiosity make a 2D plot of those places 

where the iteration on 𝑧 goes to 0 and those places where it goes to plus or minus 
infinity. Take an area from −3 𝑡𝑜 3 for both the real and imaginary part of 𝑧. Just looking 

at the imaginary part of 𝑧, the math software gives the following plot where the black 
area is where the iteration goes to zero and the white area where it goes to plus or 
minus infinity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



It is not clear what was expected, but it was not this. Something better defined would be 
nice. The shape of this fluff and its position are curious. It appears to be centered 

about 𝑧 = (0, −
1

2
). Where did the −

1

2
  come from? The fluff is symmetric about the lines 

𝑥 = 0 and 𝑦 = −
1

2
 . It looks as though one could come up with a polar function about the 

point (0, −
1

2
) to describe the circumference of the fluff. To get a better look at the 

boundary take the interval for 𝑥 to be from 0.5 to 1 and for 𝑦 from 1.5 to 2. The plot 
below is generated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 It still looks bumpy. Expanding an area several times, getting ever greater 
resolution, gives the following plot. 
 
 

 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 



No matter how much an area is expanded, it seems to look the same. Go back to the 
first fluff and do something a little different. Not only show were the iteration goes to 
zero or infinity, but also show how many iterations it takes to get there. Remember only 
the imaginary part is being plotted.  
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This looks more interesting. Looking at an area above that is greatly expanded gives the 
following. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

 No matter how great the resolution or expansion at the boundary, the area looks 
the same. This is what is called a fractal.  
 
 The plots were of the imaginary part of 𝑧. Below are plots for 𝑟𝑒𝑎𝑙(𝑧) and 𝑎𝑏𝑠(𝑧), 
respectively.  
 

real(z) 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

abs(z) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 While the plots look pretty, the main interest is in the boundary, the difference 
between where the iteration goes to zero and where it goes to plus or minus infinity. The 
plots give an indication of the rate at which the iteration goes to these limits, mainly 
showing the approach to zero.   
 
--------------------------------------------------------------------------------------------------------------------- 
 
 Hopefully, a little more is known about triangle numbers from a simple concept 
with a few interesting properties that were maybe unexpected. The mathematical 
landscape is very diverse with the possibility of something of interest around any corner.  
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